Massive data compression for parameter-dependent covariance matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining optimal sensor locations for parameter estimation via covariance matrices

Online estimation of parameters is significant for control and monitoring of many chemical engineering processes. Accurate estimation of process parameters requires measurements, that ensure observability and a good response of parameter estimates. Therefore, it is highly desirable to place the sensors optimally for estimating process parameters. The problem of sensor placement in chemical proc...

متن کامل

Parameter expansion for estimation of reduced rank covariance matrices

1 ‘Parameter expanded’ and standard expectation maximisation algorithms are de2 scribed for reduced rank estimation of covariance matrices by restricted maximum 3 likelihood, fitting the leading principal components only. Convergence behaviour of 4 these algorithms is examined for several examples and contrasted to that of the aver5 age information algorithm, and implications for practical anal...

متن کامل

Information Covariance Matrices for Multivariate Burr III and Logistic Distributions

Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...

متن کامل

Ahmad Tests for Covariance Matrices , particularly for High - dimensional Data

Test statistics for sphericity and identity of the covariance matrix are presented, when the data are multivariate normal and the dimension, p, can exceed the sample size, n. The test statistics are shown to follow an approximate normal distribution for large p, also when p >> n. The statistics are derived under very general conditions, particularly avoiding any strict assumptions on the traces...

متن کامل

Semiparametric estimation of covariance matrices for longitudinal data.

Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2017

ISSN: 0035-8711,1365-2966

DOI: 10.1093/mnras/stx2326